[예측방법론] 10강. 회귀모형 진단과 예측, 연립방정식모형
1. 회귀모형 진단 방법 회귀분석을 하고 나면, 그 결과가 믿을만한지 반드시 확인해야 합니다.이걸 모형 진단이라고 부릅니다. 1-1. 잔차란 무엇인가? 잔차(residual)란 실제 값과 예측 값의 차이를 의미합니다. rt=yt−y^tr_t = y_t –…
1. 회귀모형 진단 방법 회귀분석을 하고 나면, 그 결과가 믿을만한지 반드시 확인해야 합니다.이걸 모형 진단이라고 부릅니다. 1-1. 잔차란 무엇인가? 잔차(residual)란 실제 값과 예측 값의 차이를 의미합니다. rt=yt−y^tr_t = y_t –…
1. 상관관계 분석 시계열 간 관계 시간 흐름에 따라 변하는 두 변수 간의 관계를 측정하는 방법→ 상관계수로 두 변수 간 선형적 강도를 측정 표본상관계수 두 변수 X, Y의 상관계수 계산…
1. ARIMA 모형의 추정 추정 방법 최대우도법 (MLE: Maximum Likelihood Estimation) 개념 : 주어진 데이터가 관측될 확률(우도, likelihood)을 가장 크게 만드는 파라미터 값을 찾는 방법. 주로 확률모형에 사용 (ex. 정규분포…
1. 시계열 모형 관련 검정 단위근 검정 (Unit Root Test) 시계열 데이터가 불안정한지 확인하는 검정으로, 가장 많이 쓰이는 방법이 ADF(Augmented Dickey-Fuller) 검정입니다. 단위근 (Unit Root) 이란? 시계열 데이터에서 자기상관 계수…
1. 불안정 시계열 모형 확률보행 모형 (Random Walk) 확률보행 모형은 가장 기본적인 불안정 시계열 모형으로, 현재 값이 이전 값에 오차항이 더해진 형태입니다. Yt=Yt−1+ϵtY_t = Y_{t-1} + \epsilon_t 여기서 ϵt\epsilon_t 는…
1. 시계열 모형 개요 시계열 모형(time series model)이란, 과거 데이터의 시간적 구조와 규칙을 이용해 미래를 예측하는 모델입니다.시계열 모형은 크게 선형 모형과 비선형 모형으로 나뉩니다. 선형 시계열 모형 과거 값과 오차항의…
1. 자기상관의 개념 자기상관(autocorrelation)이란, 동일한 시계열 데이터 내에서 시간 차이를 두고 관측한 값들 간의 상관관계를 의미합니다. 쉽게 말해, 오늘의 값과 내일의 값, 또는 이번 달의 값과 다음 달의 값이 얼마나…
1. 시계열의 주파수 분석 시계열 데이터는 시간에 따라 변화하는 자료를 의미합니다. 예를 들어, 월별 온도 변화, 연도별 GDP, 분기별 매출액 등이 시계열 데이터에 해당합니다. 이 시계열 데이터를 분석하는 방법 중…
예측방법론 2강 — 시계열 데이터 분석 기초 정리 안녕하세요! 이번 포스팅에서는 시계열 데이터의 개념과 처리 방법을 초보자분들도 이해하기 쉽게 정리해보겠습니다.특히 시간에 따라 변화하는 데이터를 분석하고 예측하는 데 필수적인 개념과 기법들을…
예측방법론 1강 — 예측의 개념과 방법 쉽게 정리 안녕하세요! 이번 포스팅에서는 예측방법론 1강 강의 내용을 초보자분들도 쉽게 이해할 수 있도록 정리해보겠습니다.미래를 어떻게 예측하고, 어떤 방법으로 분석하는지 데이터마이닝, 경영전략, 경제전망에서 아주…