태그 ACF

[R 시계열분석 기초] ACVF, ACF, PACF 개념 완전 정복

시계열 데이터에서 왜 필요한가? 시계열 데이터는 시간의 흐름에 따라 기록된 데이터입니다. 이 데이터를 분석할 때 중요한 건 과거 값이 현재나 미래 값에 영향을 주는지 확인하는 것이죠. 이걸 확인하려면 서로 시간 간격(lag)이 있는 값들끼리 얼마나 관련이 있는지 알아야 하는데, 그걸 측정하는 게 바로 자기공분산함수(ACVF) 자기상관함수(ACF)   자기공분산함수(Autocovariance Function, ACVF) 정의 시간차(시차)…

[예측방법론] 5강. 시계열 모형 AR, MA, ARMA

1. 시계열 모형 개요 시계열 모형(time series model)이란, 과거 데이터의 시간적 구조와 규칙을 이용해 미래를 예측하는 모델입니다.시계열 모형은 크게 선형 모형과 비선형 모형으로 나뉩니다. 선형 시계열 모형 과거 값과 오차항의 선형 결합으로 현재 값을 설명 대표적으로 AR, MA, ARMA, ARIMA 비선형 시계열 모형 비선형 함수로 구성 대표적으로 TAR, Bilinear, GARCH…

[예측방법론] 4강. 시계열 분석 자기상관 완전 정리

1. 자기상관의 개념 자기상관(autocorrelation)이란, 동일한 시계열 데이터 내에서 시간 차이를 두고 관측한 값들 간의 상관관계를 의미합니다. 쉽게 말해, 오늘의 값과 내일의 값, 또는 이번 달의 값과 다음 달의 값이 얼마나 비슷하게 움직이는지를 나타내는 지표입니다. 양의 자기상관 : 이전 값이 크면 이후 값도 클 가능성이 높음 음의 자기상관 : 이전 값이…