[예측방법론] 11강. 예측데이터의 시계열분해(1)
예측데이터의 시계열분해(1) — 기초부터 정리 1. 시계열분해란? 시계열분해(time series decomposition)란,시간에 따라 변하는 데이터를 여러 요인으로 나누어 분석하는 기법입니다. 데이터를 그냥 한 덩어리로 보는 게 아니라,시간의 흐름에 따라 나타나는 패턴을 ‘추세’, ‘계절성’, ‘불규칙성’으로 나누어 살펴보는 것이죠. 1-1. 시계열 데이터의 변동 요인 1️⃣ 추세(Trend) TtT_t : 장기적인 상승이나 하락 경향.→ 예: GDP의…